External Ca2+ dependency of synaptic transmission in drosophila synaptotagmin I mutants.
نویسندگان
چکیده
To resolve some of differences in reports on the function of Synaptotagmin I (Syt I), we re-examined synaptic transmission at the neuromuscular junction of Drosophila embryos that have mutations in the Syt I gene (syt I). Two major questions addressed were which Ca2+ binding domain, C2A or C2B, sense Ca2+ and is Syt I a negative regulator of spontaneous vesicle fusion. Synaptic currents were induced by nerve stimulation or by high K+ treatment in external solutions containing various Ca2+ concentrations. In a null allele, syt I(AD4), synchronous synaptic currents were rarely observed but not abolished. The quantal content was about 1/60 of control but increased linearly with [Ca2+](e) with a slope of 0.95 (N) in the double logarithmic plot, in contrast to 3.01 in control. The slope of 1.06 in an allele, syt I(AD1), which lacks the second Ca2+ binding domain, C2B, was not different from in syt I(AD4). In another allele, syt I(AD3), in which one amino acid in C2B is mutated, synchronous synaptic transmission was also impaired and N was 1.54, which is significantly smaller than in control. In high K+ saline, the [Ca2+](e) dependency of vesicle release in syt I(AD4) was lower than in controls, whereas that in syt I(AD3) was even lower than in syt I(AD4), suggesting that syt I(AD3) is inhibiting vesicle fusion. These findings led us to conclude that C2B, not C2A, senses Ca2+, and Syt I is a negative regulator of vesicle fusion.
منابع مشابه
External Ca Dependency of Synaptic Transmission in Drosophila synaptotagmin I Mutants
Okamoto, Tomonori, Takuya Tamura, Kazuhiro Suzuki, and Yoshiaki Kidokoro. External Ca dependency of synaptic transmission in Drosophila synaptotagmin I mutants. J Neurophysiol 94: 1574–1586, 2005; doi:10.1152/jn.00205.2005. To resolve some of differences in reports on the function of Synaptotagmin I (Syt I), we re-examined synaptic transmission at the neuromuscular junction of Drosophila embryo...
متن کاملC2B polylysine motif of synaptotagmin facilitates a Ca2+-independent stage of synaptic vesicle priming in vivo.
Synaptotagmin I, a synaptic vesicle protein required for efficient synaptic transmission, contains a highly conserved polylysine motif necessary for function. Using Drosophila, we examined in which step of the synaptic vesicle cycle this motif functions. Polylysine motif mutants exhibited an apparent decreased Ca2+ affinity of release, and, at low Ca2+, an increased failure rate, increased faci...
متن کاملSynaptic transmission persists in synaptotagmin mutants of Drosophila.
Synaptotagmin is one of the major integral membrane proteins of synaptic vesicles. It has been postulated to dock vesicles to their release sites, to act as the Ca2+ sensor for the release process, and to be a fusion protein during exocytosis. To clarify the function of this protein, we have undertaken a genetic analysis of the synaptotagmin gene in Drosophila. We have identified five lethal al...
متن کاملInteraction of stoned and synaptotagmin in synaptic vesicle endocytosis.
The Drosophila dicistronic stoned locus encodes two distinctive presynaptic proteins, Stoned A (STNA) and Stoned B (STNB); STNA is a novel protein without homology to known synaptic proteins, and STNB contains a domain with homology to the endocytotic protein AP50. Both Stoned proteins colocalize precisely with endocytotic proteins including the AP2 complex and Dynamin in the "lattice network" ...
متن کاملA synaptotagmin suppressor screen indicates SNARE binding controls the timing and Ca2+ cooperativity of vesicle fusion
The synaptic vesicle Ca2+ sensor Synaptotagmin binds Ca2+ through its two C2 domains to trigger membrane interactions. Beyond membrane insertion by the C2 domains, other requirements for Synaptotagmin activity are still being elucidated. To identify key residues within Synaptotagmin required for vesicle cycling, we took advantage of observations that mutations in the C2B domain Ca2+-binding poc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 94 2 شماره
صفحات -
تاریخ انتشار 2005